A GENERAL METHOD OF SOLVING THE PLANE ELASTO-PLASTIC
PROBLE M)

by
R.Nottrot*™) and R. Timman™**)

1. Imtvoduction

The plane elasto-plastic problem is a simplified formulation of the problem
to determine the stresses in some medium around an infinite cylindrical
hole, Assuming a state of plane strain the problem is reduced to a for-
mulation in the plane of the complex variable z=x+ly with a hole bounded
by some closed curve B, It is required to find the stresses taking assigned
values on the boundary B and at infinity, which conditions give rise to a
plastic region that surrounds the hole and an elastic region being the
remaining exterior. The main problem is to determine the contour C that
separates the plastic from the elastic region such that the stresses are
continuous functions throughout the exterior of the boundary B. If this
contour has been found the problem divides into a pure plastic problem
and a pure elastic one so that consequently the stresses can easily be ob-
tained,

In the following we are concerned with a general method of solving the
plane elasto-plastic problem, After having dealt with the basic equations
of elasticity and plasticity the relations on which the method is based are
derived. Finally we will be occupied with some indications concerning the
numerical treatment of these relations.

The stresses are described by means of the elements oy, and Ty, of
a symmetric stress-tensor., These elements satisfy the equlllgrlum condl-
tions:

90, a'rxy
=0 (1)

ax ay

oT o0
T+ 2 =0 (2)

ox oy

which equations are fulfilled by the Airy stress-function U(x,y) if

o, = U

X vy
Oy = Ux
Txy = ~Uxy

In elasticity the function U is a biharmonic function, whereas in plasticity
this function satisfies a hyperbolic differential equation.

If ¢ denotes the angle of rotation between the coordinate-axes and the
two orthogonal directions of the principal stresses o; and 05 at some point
(x,y) then

o, = o+ pcos 29 (3)
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Oy = 0 - p cos 2¢ (4)

Txy = p sin 2¢ X (5)

1P

Fig. 1.
where for brevity we have put

o = z(o1+ 09 (6)

noj—

(61 -~ o32) (7)

N~

p =

In addition to the equations (1) and (2) Hooke's law must be fulfilled in the
elastic region which leads to the biharmonic equation for the stress-function
U. In the plastic region however a plasticity-condition must be satisfied.
This means that p (the radius of Mohr's circle) is some given function of
o from which two hyperbolic equations for o and ¢ will be obtained.

2. The basic equations of elasticity
We shall briefly go into the connection between the plane elastic problem
and the theory of functions of a complex variable. As indicated in the
preceding section the stress-function U satisfies the biharmonic equation
AATU=0 (8)
Therefore two functions ¢ and y exist such that
U = Re[ze(z) + x(2)] (9)

where z denotes the conjugate of the complex variable z. From this result
the following relations of Kolosov-Muskhelishvili are obtained:

ox + oy = 2[9'(2) + WZ_)] (10)
oy - Ox + 2iTxy = 2|Z¢'(z) + x”(z)] (11)
Oy - Ox - 2iTgy = 2[29”(2) + x”(z)] (12)

In plane elasticity one of the fundamental problems is the determination
of the elastic equilibrium, given the resultant vector (X,Y) of the external
stresses applied to the boundary of some cavity and the siresses at in-
finity. If ¢ denotes the derivative y' then the functions ¢ and ¢ must have
the form

X +1iY + .
ol{z) = - m log z + [94—(1 + 10] z t @olz) (13)

sa) - B g 5 D258 it o 4wl (14)
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Here ¢o and Yo are functions holomorphic in the exterior of the cavity
(it is assumed that the origin of coordinates lies in the interior). The
constants p, q and t are the stresses at infinity:

ox(e0) = p
oy(®) = q
'rxy(°°) =t

and ¢ is an unessential constant that does not influence the stresses. Be-
cause we have to do with the derivatives of the functions ¢ and ¥ we shall
denote these derivatives by ¢ and ¢ instead of the functions itself. Thus
the equations of Kolosov-Muskhelishvili become

ox + oy = 2[e(z) + 2(z)] (15)
oy - Ox + 2iTxy = 2[29‘(2) + (//(z)] (16)
oy - ox - 2iTxy = 2[z¢'(z) + ¥(z)] (17)

where o and ¢ have the form

o(z) = - % 1/z + [%-&- iCj| + 9o(z) (18)
Wz) = %—ﬁf—)) 1/z + [_ 2y it] + Yo (2) (19)

the functions ¢, and ¥, being represented by

volz) = L F (20)
- 5§ Bx
!//o(z) - kEZ ZkK (21)

3. The basic equations of plasticity

As pointed out in the first section the plastic region in the exterior of
the boundary B of the hole is that region where the plasticity-condition is
satisfied. This condition defines p as a function of ¢ from which we shall
derive two hyperbolic differential equations for the quantities o and ¢.

According to (3) and (5) the stresses oy and Txy are respectively

o+ pcos 2¢

and
p sin 20
Differentiating with respect to x and y we obtain from (1) if p'=%%
do - 2 . o 2
(1 + p' cos 29) Bx " 2p sin 209 —a%+ p'sin 2¢ ®+ 2p cos 29 §= 0 (22)

The stresses Txy and oy are respectively

p sin 2¢
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and
o - pcCcos 2¢

Again differentiating with respect to x and y it follows from (2) that

p'sinzqg—§+ 2pcos 2<pg§+ (1-p'cos 2<p)g%+ 2 psin 293—; = 0 (23)

The equations (22) and (23) constitute two quasi-linear equations of the
first order. In order to find the characteristics we utilize the property
that in a linear combination of (22) and (23) differentiation occurs in a
characteristic direction. Multiplying the equation (22) by sin A and the
equation (23) by cos A and subtracting them we obtain, leaving the sig-
nificance of A as it is

. . 0
[—sm)\ + p'sin (2p-2A) 5}% + 2pcos (2¢9-2) %}% +
iled ; 99 _
l:cos A - p'cos (2¢9-2) -8§+ 20 sin (2¢-2) By 0 (24)

Setting

cos A - p' cos (29 - A) _ sin (29 - A)

_Sin A+ sin (29 =N  cos (2g-x)  ‘&BH

we obtain
-sin xsin (2¢-A) + p! sin? (2¢-2) = cos X cos (29-A) - p' cos? (20-2)
or

cos 2 (9-A) = p (25)

Thus for real characteristics the condition [p',<1 must be satisfied.
However this is obvious from the fact that

= cos « (26)

QlQ
Qo

where a is the complement of the angle between the tangent at the envelope
of the circles with radius p(o) and the g-axis in Mohr's diagram.
Hence

cos 2 (9-A) = cos «

pla)

Fig.2.

and consequently

2(e-2) = t @ (27)
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from which we find that

tg u=tg (29 -2) = tg (¢ ¥3)
so that
u=9t% (28)

Thus we obtain from the equation (24):

[—s_in(:p t%) + cos o sin(e + %)}g% + 2pcos(p + %)SJ;; +
[cos(:p + %)—cos a cos(e + %):Ig—g + 20 sin(g + %)g%= 0

Applying simple goniometric substitutions the following formulas for the
characteristic equations

sin @ [cos My g—g—+sinu1 g—?}+ 2p [cos 1751 % + sin pq g_;] =0
and
-sin o [:cos 25 %g-t- sin ug g—;] + 2p l:COS ug -g?t + sin ug g—;’?-jl =0,

o . : .
where /.11=<p+% and u2=:p-§j are easily derived. These equations can also

be written in the form

1 QO-_ ai =
sin a Y + 2p ey 0 (29)
i 3_0 a =
-sin « 31y + 2p —La/-tz 0 (30)
Putting finally
in @
Q)(O') :-'f Sz—pd()' (31)
the characteristic equations take the simple form:
8% | 9de .
o1t + ey 0 (32)
29 89 .
a/.lz B oLy 0 (33)

Thus the stresses, taking assigned values on the boundary B, can easily
be found by means of the equations (29) and (30) or (32) and (33) in the
plastic region.

4. The relations on which the wmethod is based

In this section we derive the basic relations for the method to deter-
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elastic,
region

plastic
region

Fig.3.

mine the unknown contour C that separates the plastic from the elastic
region. The equations of Kolosov-Muskhelishvili;

oy + oy = 2[e(z) + 92| (34)
Oy - Oy + 20Ty = 2[Z o'(z) + ¥(z)] (35)
oy - 0x - 21Ty = 2|2 9'(2) + —(?):I (36)

hold in the elastic region, especially on the contour C. Thus, if we con-
sider this contour, the stresses in the left members can be taken as being
determined from the assigned values on the boundary B by the method of
characteristics in the plastic region, whereas the functions ¢ and ¢ refer
to the elastic region. In this sense the equations (34), (35) and (36) are
only valid on the contour C.

If z=w(€) is a conformal mapping that transforms the (unknown) contour
C in the complex z-plane into the unit-circle in the complex §-plane then
the Fourier-series of both members of the equations (34), (35) and (36)
must be identical on the unit-circle in the {§-plane. As regards this
conformal mapping it is assumed that the exterior of the contour C
in the z-plane is mapped onto the interior of the unit circle in the com-
plex {-plane such that w(o)=ew. Because the mapping is a one-to-one cor-
respondence having a simple pole at §{=o the function w({) can be represented
by:

W) =S4y, +y1 € +yat? 4 oysti (37)
€

Since the argument of the coefficient ¢ is arbitrary this constant can be
assumed to be positive:

c>o0
Thus the point is to determine a conformal mapping such that both mem-
bers of the equations (34), (35) and (36) are identical on the unit-circle
in the ¢-plane. Indeed the equations of Kolosov-Muskhelishvili are then

fulfilled on the contour C in the z-plane. Suppose the left members of the
equations (34), (35) and (36) to be mapped on the Fourier-series:

o0

ox + oy — F(g) = _% cpol, (e, = Cn) (38)
and
Gy - Oy - 2iTy—>Glo) = ¥ dgon (39)

so that
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oy - ox + 2iTyy —> G(o) = L d o (40)

where o=el®, The functions ¢ and ¢ in the right members of the equations
(34), (35) and (36) are power-series of 1/z. Since

1 gk

1
L-
z [%+ Yo+ ¥18€ + 7282 +...]k [c +7,8 Tv182 +v98® + ]k

where [c+'yo§+'}/1§2 Yo €3+, . ] -l can be written as a series of non-negative
powers of ¢ it follows that ¢ and ¢ have the expansions

dw=@aﬁ (41)
and
w(e) = T bygk (42)
k=0

where obviously Re(ao)‘pzq, by =-%(p-q)+it and by=-ka;. Thus it follows
from the equation {34) that .

2ap = cp, n > 1 (43)
Moreover

Co = ptg (44)
and

by = - ka; (45)

If the resultant vector (X,Y) of the external stresses at the boundary
B vanishes then apparently the coefficients a; and bj; vanish. Since

olt) = FE T T ele) - W)

the equations (34), (35) and (36) become after the conformal transformation

F(o) = 2[e(a) + olo) (46)
Glo) == 2[& (o) + W} (47)
o) = 2[5 ¢'(o) + W) (48)
Now applying the Cauchy-operator to the equation (47):
27r1 ¢ G—dfg - & w' W—_ 5}§ %
Z o o-°¢C 7T1 C
where |§’| < 1 we find that ,
7
21_771 $ %ﬁg ) 27r1 $ G ;)5 %«1 do = 21_7!1?—00 ki:o dlolgﬁl 0de =

E dn§

n=0
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and
1 @o)do _ 1 ;57— € gk _ 1 = s B &
m?‘c_g“m}“//(a) kgoa(_ —ﬁ{li)kgoc_ll okt 999 =
By = -2 - it
Putting
LeL ST = £ aon
and passing to the limit |§| = 1 we find, since o
k
2—7r—1 5 g—(_—% = ﬁ;ﬁb_g"—,q:'(o) ;o ziﬂdo = -2—17;0123":; ;Eo Alcﬂ%made =
=n§0 A ¢
that
2Anp = dp, n» 1 (49)
20 = do * p - g + 2it (50)
In the same way we find from (48) that
d_y,= 2A_,+ 2by, n 1.
Thus we have from (45) especially:
2A. = d1+ 2 kay (51)
We have put
Therefore:

c
[;+Yo+710+7202 +] |:_
lj—coz + 7, +——?2 +—3;723+‘ . }
or ’
e v 2 - 2asg 38.3 n
[E+'YO +v10 + v20 +:] al +——+—
3— o
1:-cc2 _ +2—02 + 28 4] L Ago?

Equating the coefficients of ok in both members we find, if k = O:

mElmam'YmH( 1 - “Akz c mE=1 MA g1 Vi (53)

From (49), (50) and (51) it is evident that

kK >0 (54)
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Thus neglecting terms of order higher than n in the expansion of w(f) we
obtain the relations:

k=1: ai1y1 + 2agys + 3agyz +..... + nanpyn = e+ Aiyr +2Aeye fa.. .. A, Yy
k=2; ayYg+ 22973 .. ... Hn-1)a,.17n = -AoC + Ag¥1 + 2A3¥g *+. .. .. + nMg41 Yo
etc. 0 = = = = - - -
______ (55)
B17n = -ApaaC F A V1 ¥ 2Agave el +MAgn-1¥n

If we consider the constants ay and Ay as coefficients then we have a
set of n homogeneous equations. Evidently v, does not occur in these
equations. This is explained by the fact that

1B+ 28582+ 35583 +. .. €2 [a;F + 23,82 + 3a58° +. . ]
5+ Y 2’Yz§ + 3')’3§2 +. -C “‘71?2 + 2'3’2E3+ 35’354 +
NnEn

is a power-series of £ in which the constant term 4o vanishes. Indeed the
value of vy, does not affect the integral

I Y% @ I yog' . ¢X Yo W o H1EK

ﬁ_ ﬁo-td":Zﬂi?{ o' k§00k+1dg=ﬂ 1—);3 kEO ol gk

de =0

If the values of the coefficients in the equations (65) are known, then we
can solve these equations so that ¢,v1,v9,v3,... are determined up to a
factor of proportion. This means that the mapping w({) has been found
up to a similarity-transformation. In case of central symmetry clearly the

coefficients vo,v2,v4,...; a1,as,as,... and Aq,Ai,A3,... vanish. In case
of symmetry with respect to the x-axis in the z-plane the coefficients
Yo,Y1:Y2,... are real. Generally however we need another equation to ob-

tain the value of v,. Let us again consider the equation (47):

G((;):z[g.m+m]

or
2[2-+'yo+'ylo'+,__] [51+32+E‘§ +] Ba
ol _ g g g pad
L dyon = 555 37 + 2 L —
[—CO'Z‘F’Y:L +—O_—+—EZ—+__,] OO_n
Thus
[—coz+—71+-2%2+i73 ] Edn0“=2[ +oyo ty1o+. . ][a +2a2+37‘32§+..]

+2[ o2+y, + 27 £3+ ]m By
As regards the left member we put
[Co"2+,y +272 %h.] idn0n=§pn0‘n

so that
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Pn = -cdpp T k§1 k¥y dpsk-1 (56)

Thus px is the coefficient of oX in both members. It follows therefore from
the right member that

pr = -2 Cké_k +2 X rér Yek-1 T2 [“E-k+2 c+ L 1 bl ‘?r] (57)
=1 r=1

Therefore, approximating the function ¢ by the first (m+1) terms of its
expansion (42), we obtain for k=0,-1,...,-(m-1) a set of m equations

in which v, ,bg,bg, ..., by are considered as the unknowns, the coefficients
b, and by being
bo = -z (p-q) + it (58)
b1 = - kaj (59)

Thus in order to determine v, it is necessary to calculate te function .
Finally, as regards the determination of the factor of proportion it is
observed that hitherto we did not utilize the condition (44):

Co = ptq (60)
Thus the mapping-function ¥({) must be such that this condition is satis-
fied.

Before occupying ourselves with the numerical treatment of the relations
obtained up to now we will consider an example: Let the boundary B be
a circle with radius R to which a normal loading f is applied. Because of
the. central symmetry we have that

a; = by =0
The boundary-condition (44) must be satisfied:

Co = pPTq (61)
Let the plasticity-condition be

p=k

where k is a constant. At the boundary B we have the stresses

2k + f
0'2=f

o1
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Application of the equations (32) and (33), the characteristics being log-
arithmic spirals r=aet’ (where 9=9-7/2), yields the following expressions
for the stresses:

Ox 0+pcos2<p=2klog%+k+f—kcos20

oy = 0-pcosZcp—Zklog—I"R+k+f+kcos20

Txy = psin 29 - ksin 29

from which we find that for the plastic region;

) _
cx+oy=2k10g§—{2+2k+2f=2k10g%zg+2k+2f

oy - Ox - 2iTyy = 2k cos 29 + 2ik sin 29 = 2ke™ = 2k 2 (62)

Let us consider the conformal mapping

C
Z =% Yo +y1€ + vz +yst® + L.

Because of the central symmetry the coefficients vo,vY2,7v4,... vanish,
Neglecting terms of order higher than 2n we obtain the following expres-
sion for oy - ox - 2iTyy

c -
I Y18+ v58® 4.+ ygpa g™
Q - = - =
¢

Oy - Ox - 2iTxy = 2k
y y 3 by #2n-1
tv18 +y38” Lt yg 48

z@[% R O L | RS G A S
where

1

2 4
=Xo + x28% + x48% +. .,
e+ 8% + vt - 88 4 hyg, ™

From

- 2
b= Lo vt vt ey 0 [xo + xat? + xat® 4. ]
we obtain the relations
Xge =1

Xov1 T X2¢ = 0
XoY3 t X9¥1 * X4c = 0

_______ (63)
XoYk * X9Yk-2 +...+ Xk-47Y3 + Y k-2 Y1 + XgC = 0

Thus the Fourier-series G(o) is

2kic 3 -1z 4 X2, X4
*E'[E'*"ch"_')’ad +---+"Y2n-10n]|:xo +‘€Z+EI+---]

and consequently we have from the relations (49), assuming that t=0:
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22 =dg =0, k >2n-1

2Xop-2 = dop-2 = 2k Xoyon-1  _

2A2n-4 = dop-4 = 2k (XoYon-3 + XgYon-1) _

2X2q-6 = dog-6 = 2k (Xoyon-5 + X2von-3 + X4Yan-1) (64)
etc.,

2, =do+p-q*= 2k(Xoy1 + X2v3 + XaYs *.. .+Xon-2Yn-1)TP -d

Let us consider the equations (55):

k=2: 28gv3+ 4a4vs+.. .+ (2n-2)az-2y2-1 = -XoC Tt Ag¥1  t...+ (2n-1)AanVepa
k=4: 2335+, ..+ (2n-4)agn-4yzm-1 = -2 F Y1 +.. .+ (2n-1)Agnigy on-1
etc., = @ —e-----

------- (65)
k=2n-4: 233Yon-3 + 484Y20-1 = -Agn-6C * Agn-4¥1 *. ..+ (20-1)N4n-g¥2n-1
k=2n-2: 289Ym-1 = -Agn-4C * Agn-2¥y ...+ (2n-1)4n-4Y2n-1
k=2n; 0 = -Agp-2¢ + A2ny1  +...+ (2n-1)X4n-2y2n-1

Now Ak=0 for k > 2n-1. From the last equation in (65) it therefore fol-
lows that Agp-2=0. From the second relation in (64) we then find that ygp-1=0.
Consequently we obtain from the (n-1)® equation in (65) that X2p-4=0 so
that from the third relation in (64) it is found that vyg-3=0 etc. In this
way we find that

Xo=Xz = g= —on

n
o

and
Y3 = Y5 =Y < ---- =0
so that

w(® = % + 718

From Ao=0 we obtain
21Q—io'yl +p-q=20

Thus

where

In order to determine the factor ¢ we have the condition (61). From
— 2
ox + oy = 2k log c2(1 + Be)1 + BE) + 2k + 2f - 2k log R

we find for || = 1:

—~

2
ox + oy = 2k log c2(1 + Bo)(1 +%) + 2k + 2f - 2k log R

Therefore
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2
co = 2klog-1%z + 2k + 2f
Consequently
2
p+q =2 log fr + 2k + 2f

from which we find for the constant c:

1 [pre
c = ReZk[Z ‘f‘k]

Thus the mapping is given by

z=c(%+3§) = Reili[%i'f'@{% + gﬁgf}

which function represents an ellipse with semi-axes c(1+f) and c(1-8).

5. The numem’cal method

To solve the elasto-plastic problem using the relations which have been
derived in the preceding section a relaxation-method can be applied. To
some given set of variables c¢,vs.,7vY1, Y2 ...;%Yn corresponds a transfor-
mation-function wi(f) that maps a curve C1 onto the unit-circle in the
complex C-plane. Let us start from the idea that the equations (34), (35)
and (36) refer to the contour C1. Application of the equations (29) and (30)
yields stresses in the region bounded by Ci. Thus from a (generally num-
erical) Fourier-analysis on the left members of the equations (34), (35)
and (36) coefficients cy and dy are available, Then from the relations (43)
coefficients a,, k > 1 follow and from the relations (49), (50) and (51)
coefficients Ay, k> -1 are obtained. In this way coefficients ay and g

are added to the set of variables ¢, vo,¥1,7v2 ...7n-
If the equations (55) and (58) and the condition (44) are denoted by
fie, Yo, Y1, Y2, .. . ¥4 )70 then the positive semi-definite function defined by
S = )iilfi|

equals zero for the solution of the problem. Therefore one can find this
solution by minimizing the function S; starting from an initial point on the sur-
face S one has to change in some way the variables ¢,v_, v, 7gs+++5 7,
such that S decreases. Having thus found a new point the process is re-
peated. In order to study some more details let us consider an example:
Let the boundary B be a circle with radius a to which a normal loading
{ is applied. Because of the central symmetry ai1=b;=0. Let the plasticity-
condition be

p = (o+0,) sin B

At the boundary B we have the stresses

I

o1 f{1 +2A) + 2k
oy = f

where
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k = A—O’o
and

\ = sin B
1 - sin

Fig, 5.

Application of the equations (32) and (33), the characteristics being log-

arithmic spirals Aexp [‘i_-_e tg 925] (where 6=¢-7/2) yields the following ex-
pressions for o and p:

r.2)

r.2A a7

Q
i

)2)\ )2)\

©
{

*)xf(% +k(§

Thus we obtain from

Oy = o0+ pcos 29 = 0=~ p cos 23
Oy = 0-pcos 2¢ = 0+ P cos 23
Txy = p sin 29 = - p sin 29

that for the plastic region

2X
(M (1 +0) + k(1 + )] (_g.) -k

Ux+0y=2
A

. 2N 97
Oy - Oy - 2iTyy = ZDI‘*' k] (g) ¥

Let us consider the case that a=1, k=1, B=7/6, so that A=1. We then
have the following simple expressions for the plastic region:

ox + oy = 2(2 zz - 1} {66)

Oy - oy - 2iTyy = 22° (67)
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Therefore, approximating the mapping function (37) by

_ C

9
z LR ZE SR TN GRS RPN 7

Ua

(the coefficients c¢,v1,v3,¥s,¥7,Yy9 beeing real because of the symmetry
with respect to the x-axis in the z-plane) we find that

C = A
ox + Oy = 2[2(E+ Y10 + v30% + v505+ v707 + v909)(co + U+t L+l 1.0 L]

Consequently we obtain from the relations (43):

4 (cv1 +v1vs +¥3vs + ¥5Y1 + v1ve)
4 (cvs +v1vs + ¥3v7 + Y579)
2ag = cg = 4 (cvs + v1y7 *+ v3ve)
4 (cy7 + v1v9) (68)

2asg cg =

2a4 C4 =

2ag cg =

and from the boundary-condition (44):

42+ v+ v+ vyt t %) -2 = ptg (69)

From the expression:

Oy - Ox - 2iTxy = 2 (%+ v10 + v30% + v50° + v707 + vgo?)?.

we obtain as a consequence .of the relations (49) and (50), assuming that t=0:

2 o = dotp-q = 4cy1 tp-gq

2xg = dg = 2712+4c73

2Ay = dsa = 4cvs + 47173

2rg = de = 2v3% +4v17vs + 4cvq

2Ag = dg = 4v3vs +4v1v7 +4cvy

2710 = dio = 2752+ 4v3v7 + 4717s

2h12 = dig T 4ys5Y1 t4v3ve

2014 = dia = 2P+ 4ysye

2h16 = dis = 4vqvg

2h1g = dig = 2vyg? (70)

Finally we have from (55) the equations:

k=2 0 ) = -Xoe *Agv1 + (3hy- 2ap)ys + (5Ag - 4ag)¥s + (Thg - 63g)vq + (SAgg - Bag)vg = 0
k=4 : fg = -Xgc + Agv; + Bhgyz + (54g - 2ap)vs + (Mg - 4a4)yy + (g2 - 6ag)yg = 0
k=6 : fg = -Agc + Agy1 + 3rgys + S5A10vs + (TA12 - 2a2)Y7 + (9A14 - 424)7vs = 0
k=8 : f4 = -agc +Agvy; + 3h1ovs + 511975 + Thigy7 + (936 - 2a9)7vg = 0
k=10: f5 = -Age + Aov1 + 3A1gv3+ 5X14y5 + ThsyT + 9r1gye = 0

(71)
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The unknowns c, ¥, Y3, ¥Y5. Y7, Y9 must satisfy the condition:
+
2(02 + —)/12 + —)/32 + —YSZ + 772 + —)/92) -1 = p q (72)

It is observed that in this example a numerical Fourier-analysis is not
necessary; from (638) and (70) the coefficients in the equations (71) are
available from given values of ¢, Y1, Y3, V5, Y7, 79.

If p=q then the equations (71) are solved by 7v;=v3=Y5=y7=v9=0 so that
from (72) we obtain for the constant c:

73
Y (73)

Thus is case p=q the curve separating the elastic from the plastic region
is a circle with radius {% + %ﬂ}%

To find for different values of p and g the solution of the problem re-
laxation is applied. A simple method is to minimize the function

5

Swmbmp%nmvw=15|vabwnm7mw”

by changing alternately the wvariables in the direction of their axes such
that S decreases, After such a modification of the variables a correction
must be applied because of the condition (72). However such a correction
can disturb the improvement of the function S. This can be avoided by
putting

+
fo = 2(c2 +1? + v+t byt rwt)-1-B 2

and minimizing the function
S=§lf|
=1 17!

. Furthermore this simple method generally breaks down because of ridges

that occur on the surface S. Then it is essential to start a new stage,
i.e. to change the directions in which the variables are modified. This is
done in Rosenbrock's process, which process was used to solve the equa-
tions (71) with the condition (72). As regards the starting point it is ob-
served that if p=q the solution is known from (73). Therefore it is recom-
mendable to vary the quantities p and q starting from p=q; the start of
the next calculation is then the result of the preceding one. The following
results were obtained:

¢ Y1 Y3 Ys Y7 Y9 p q accuracy | or.ofstages
1,414 0 0 0 0 0 3 3 0
1,3911 -0,044 ~0,0006 0 0 0 3 2,75 0,01 3
1,3912 | -0,0450 { -0,0007 0 0 0 3 2,78 0,001 4
1,3657 | -0,092 -0,0035 | -0,0004 0 0 3 2,5 0,01 3
1,3386 | -0,1415 | -0,0053 | -0,0006 0 0 3 2,25 0,01 10
1,3082 { -0,1961 -0,0182 | -0,0029 -0,0005 -0,0001 3 2 0,01 7
1,2733 | -0,2555 | -0,0274 | -0,0059 | -0,0019 | -0,0006 3 1,75 0,01 6
1,414 0 0 0 0 0 3 3 0
1,403 -0,1809 -0,0113 -0,0013 -0,0002 3,9 2,5 0,01 3
1,385 -0,2835 | -0,0328 { -0,0076 | -0,0025 |-0,0012 { 3,75 | 2,25 0,01 7
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c l Y1 l Y3 l Y5 Yq l Yg l P l q l accuracy l nr, of stages
1,732 0 0 0 0 0 5 5] 0
1,7260 ~0,1458 -0,0056 -0,0005 -0,0001 0 5,6 | 4,5 0,01 4
1,7043 ~0,3034 -0,0292 -0,0058 -0,0014 -0,0003 6 4 0,01 4
1,7050 ~0,3034 -0,0280 -0,0056 -0,0014 -0,0004 6 4 0,00002 10
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For high values of the stresses p and q the approximation of w(f) ap-
peared to be insufficient. It is then necessary that some more coefficients
in the approximation are taken into account. Starting from the mapping-
function

=—C—

) 11
z ¢ + 1€+ 1383 + 5 €5 + v T+ ygt® + eyt 4 v15§15

one obtains the required equations in a similar way as in the preceding
example. By minimizing the function

9
s= ¢ |
i=1
where eight functions f3,f2,...,fs are obtained from the equations (55) and

fg is constituted by the condition (44) the following results appear

L B R RN BN N BN R
2,35 0 0 0 0 0 0 0 0 10 |10
2,289 | -0,109 | -0,008 | -0,0001 0 0 0 0 0 10 |9
2,226 | -0,225 | -0,012 | -0,0013 | -0,0002 0 0 0 0 10 | 8
2,150 | -0,360 | -0,082 | -0,006 | -0,0013 | -0,0004 | -0,0001 | -0,0001 0 10 |7
2,053 | -0,521 | -0,081 1} -0,026 1 -0,011 | -0,0052 | -0,0027 { -0,0014 | -0,0007 { 10 i 6
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c Y1 3 Y5 Yq Y9 Y11 Y13 Y15 P a
3,608 0 0 0 0 0 0 0 0 25 | 25
3,495 | -0,216 | -0,006 | -0,0004 0 0 0 0 0 25 | 22
3,405 [ -0,371 | -0,021 | -0,0022 | -0,0003 0 0 0 0 25 | 20
3,306 | -0,545 | -0,048 | -0,0088 | -0,0023 | ~0,0006 | -0,0002 0 0 25 | 18
3,180 | -0,752 | -0,102 | -0,028 | -0,01 -0,0041 | -0,0018 | -0,0008 | -0,0004 | 25 | 16
3,1083 | -0,904 1 -0,175 | -0,0757 | -0,0427 | -0,0272 | -0,0183 | -0,0119 | -0,0067 | 25 | 15
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To improve accuracy one could try to apply successive approximation,
However generally the matrix of coefficients in the equations (55) is ill-
conditioned.

Finally it is observed that a relaxation-method as pointed out above can
be generally applied to obtain the solution of the elasto-plastic problem,
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